
Fig. 1. External and internal views of stacked film
technology capacitors.
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Abstract: Polypropylene metallized capacitors are of general use in power electronics because of their reliability, their
self healing capabilities, and their low price. Though the behavior of metallized coiled capacitors has been discussed,
no work was done about stacked and flattened metallized capacitors.

The purpose of this article is to propose a simple analytical low frequency model of stacked capacitors. We
solve the  equation of propagation of the magnetic potential vector (A) in dielectric, in order to calculate the stray
inductance of the capacitor.

We propose an original method of resolution, based upon the finite element method, in order to present an
analytical but  approximate solution of our problem. Then, we give some experimental results proving that the physical
knowledge of the parameters of the capacitor (width, height, and thickness), enables the calculation of the stray
inductance.
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1 Introduction
Polypropylene metallized capacitors are of general use in
power electronics because of their reliability, their self
healing capabilities and their low price. Nevertheless, the
generalized use of these components does not imply a
good knowledge of their behavior.
Our purpose is to determine a simple model of the stray
inductance from the knowledge of geometric parameters
of the capacitors (width, height, and thickness). The
study is done for stacked and flattened film capacitors, in
low frequency. Then we can neglect the radiated
electromagnetic fields and the consequences of the
environment (electromagnetic disturbances) considering
that the capacitors could be shielded if necessary.

2 Structure of a stacked film
technology capacitor

  

Metallized stacked capacitors are made up of alternate
dielectric and metal layers. The metal layer is typically
composed of a few tenth of nanometers films of Zinc
and/or Aluminium. The ends of the stack are sprayed
with fine metal particles (Schoop process), which allows
the connection to an external circuit.

3 Macroscopic model of capacitors
To calculate an analytical expression of the stray
inductance, the internal current distribution must be
known, as well as the internal magnetic field distribution.
We know a propagation law in each medium [1, 2, 3], the
continuity conditions between metal-dielectric and the
boundary conditions, therefore we are able to solve the
propagation equation (fig. 2).



 

Fig. 2. Structure of the actual capacitor. The surfaces where
boundary conditions must be taken into account are

indicated.
 

From Maxwell equations

(1)

and Lorentz gauge

(2)

we obtain the propagation equation of potential vector A
inside each layer of metal and dielectric (Fig. 2)

(3)

At low frequency, equation (3) can be reduced

(4)

Capacitors being made of about three thousand layers of
metal and dielectric (fig. 2), we consider that a numerical
determination of the current density would be better than
an analytical one. Therefore, we must solve analytically
the propagation law. In order to simplify the
determination of the current and field distribution, we

assume there is no change in capacitor behavior when an
Fig. 3. Structure of the equivalent capacitor. The surfaces
where boundary conditions must be taken into account are

indicated.
homogeneous material with appropriate characteristics
takes place of the stack metal and dielectric (fig. 3 and 4).
In a real capacitor, the current density is composed (fig. 2)
by a displacement current in the dielectric and a
conduction current in the metal. In the homogeneous
capacitor, the current density is represented (fig. 3) by an
equivalent current density. Because of the position of the
metallic layers, the current density vector is parallel to the
z axis. The vectorial propagation law (equation 4) gives
three scalar equations, that can be reduced to one because
the current density J and the potential vector A are
collinear to the z axis. But A depends on the two other axis
x and y. As a consequence, we can transform our 3D
problem into a 2D problem and solve it on a surface
parallel to the schoop (fig. 3). We assume that, on this
surface, there is no field outside. The boundary conditions
are (fig. 4):

(5)

Since, considering that the capacitance of capacitors a and
b must be equal (fig. 4), we have:



(6)
where C(a), C(b) are the value of capacitor (a) and (b)

respectively.�
0 : permittivity of the vide.�
r1,

�
r2 : relative permittivity of capacitor (a)

and (b).
n : number of layers in capacitor (a).
w, l : width, height of capacitor (a) and (b).
e  : thickness of the dielectric.
h : thickness of the homogeneous compound.

All the parameters are known except the relative
permittivity of capacitor (b). It can be obtained by:

(7)

which implies a change in the value of the relative
permittivity (�

r). The capacitance of the capacitor
remains constant. For example, the variation of
permittivity between a 10 µF capacitor (l = 1.32cm, w
= 1cm, h = 1.52cm) and its equivalent compound is
about 108.

Fig. 4. Characteristic of the capacitors

4 Analytic resolution
We cannot solve equation (4) by a variable separation
method because this equation cannot be written as

 (
�

, �  are linear operators). We are going
to use finite element method [4], but instead of using n
elements to represent the capacitor, we only use a single
element that occupies the whole surface of the capacitor.
The only restriction we have using this technic is that no
brutal variation of current and field should occur inside
the unique element. This condition can be assumed,
provided that our model is restricted to low frequency.
Therefore, in absence of the exact solution, the finite
element method results in seeking the best approximate

possible solution. To solve a differential equation such as,
(8)

an approach solution by the finite element method is

 

(9)
Where  is a row vector

composed by P1, ..., Pn independent and linear
functions, like polynomial or trigonometrical
functions.

  

 is a column vector formed by a1, ..., an

approximation parameters.
In order to simplify the analytical definition of arbitrary
shapes and to clarify the solution of the equation (4), we
have to introduce the reference element [5]. This reference
element is a very simple shape (triangle, square), in a
reference space, which can be transformed in a real
element by a geometric transform � . The transformation
depends on the shape and the position of the real element.
Each transformation is selected as to present the following
property: it is bijective in any point located on the
reference element or its border. In other words, to each
point of the reference space, corresponds one single point
of real space, and inversely. For the plate capacitor, the
reference form is a two unit wide square in an arbitrary
unit.

Fig. 5. Reference element for finite elements method
A solution, which satisfies the boundary and symmetry
conditions (5) of equation (4), is :

(10)

Where P1= (x2-1).(y2-1)
P2= (x2-1).(y2-1).(x

2+y2)
P3= (x2-1).(y2-1).(x

2.y2).
The three functions  satisfy the boundary conditions and
are linearly independent. The use of only three
polynomials is a good compromise between accuracy and



speed computation. The approximation parameters a1, a2,
a3 can be calculated by different technics of
approximation by weighted residues such as point
collocation, subdomains collocation, Galerkine method,
least error square method, Ritz method...
We used the Galerkine method, and least error square,
because we find that the error is less important than in
other methods and we present here only the Galerkine
method.

4.1 Galerkine method
The method of the weighted residues [4] consists in
seeking  U functions which cancel the integral form

(11)

for all weighted functions 
�

, also know as test functions,
which belong to a space of functions E� .  E�  is a space
vector of infinite dimension, composed by real valued
functions. If the dimension of E�  is finite, the solution U,
which satisfies (8), is  an approximate solution. The
Galerkine method [4, 6, 7] uses as weighted functions the
approximation function:

(12)

It is routed in a procedure of minimization by
orthogonalization which calls upon the properties of
scalar product. We have a system of three equations with
three unknown factors (a1, a2, a3), the resolution of which
permits us to  find the optimal approximate solution.

(13)

4.2 Calculating the stray inductance
Equation (13) gives us the potential vector A and, of
course, the magnetic excitation H [8]. The
electromagnetic energy W in the volume V of the
capacitor is :

 (14)

When a current flows in the capacitor, it creates a
magnetic field which, in turns, generates a stray
inductance.

The associated magnetic energy is:

(15)

And

(16)

Using equations (10), (13) and (16), the analytical
expression of the stray inductance is [9]:

(17)

K is a constant, which is subordinated to the number of
polynoms incoming from the method.

5 Experimentation
The validation of our model is based, in one hand, upon
stacked capacitors from Siemens-Matsushita (fig. 7) and,
in the other hand, upon data analysis concerning flat coil
capacitors from SB Electronics (fig. 8).

Because no data is available for Siemens-Matsushita
stacked capacitors, we recorded the curves of the
impedance vs frequency on an HP 4194 A impedance
analyzer. From the first resonance frequency of these

curves , we deduce the stray inductance of the

capacitor [8]

(18)

In order to enforce the boundary conditions, we covered
the capacitors with a copper ribbon when we carried out
our measurements. As a consequence, the capacitor is
shielded and no magnetic field is present outside the
compound. Also, we take into account the stray inductance
of the connections [10]:

(19)

Fig.6. inductance of the
connections



Fig. 8. Comparison between the value of the calculated from the SBE datasheets
and the calculated model (equations 17 and 19).

Fig. 7. Comparison between the value of the practical  inductance (from HP4919A)
and the calculated model (equations 17 and 19) for Siemens-Matsushita

components.

The comparison between the model (equation 17 and
19)  and the experimental results (equation 19) are given
on fig.7. It can be seen that measured values of the stray
inductance differ slightly from the expected ones. The
difference is mainly due (fig. 7) to the difficulty to
evaluate the stray-inductance of the external measuring
circuit (soldering, connection cable, circuit).

SB Electronics technical information provides the
curves of impedance vs frequency for capacitors with six
different voltage ratings (200, 400, 600, 1000, 1200 and
2000V DC). Again, we deduce the stray inductance from
the first resonance frequency (fig. 8: datasheet
inductance). For calculation, flat coil capacitors, have
been considered as equivalent to rectangular ones.

Results are plotted on fig. 8.
The discrepancies between the two curves are

primarily due to the fact that a flat coil capacitor is
naturally more inductive than a stacked one, and the use of
cartesian coordinates is perhaps not suited for these
capacitors, elliptic coordinates, would be better.

6 Conclusion
From the magnetic field distribution, we have established
the expression of the stray inductance of stacked film
technology capacitor. By transformation of a discrete
material (fig. 3: capacitor a) into an homogeneous system
(fig. 3: capacitor b), we can simplify the expression of the



problem. Then an analytical solution of the problem is
possible. However, even with this simplification,
analytical resolution of equation (6) in a cartesian
system, is especially laborious and we use a numerical
technic (finite element method) to calculate an analytical
and approximated value of the stray inductance. We get
it off from its usual work context, but in this case, it
gives good results.

Extracting the internal stray inductance from fig. 7
(inductance without the linear inductance of the
connections) shows that this structure has a stray
inductance typically less than to 1nH. Now we have to
calculate a high frequency model of the stacked
capacitors, it will be our next job.
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